Adobe Sneaks: Changing Outfits in eCommerce with AI
Once a year, a call goes out to thousands of employees in Adobe offices around the world. Anyone in the company, from engineers and data scientists, to UX designers and product managers, have a chance to put forth new and innovative ideas that evolve the way brands engage consumers digitally.
Over the years, Sneaks has become an important innovation engine for Adobe, working its way into our apps and delivering popular features such as an AI assistant in Adobe Analytics. The Adobe Sneaks submissions this year, focused on AI and mixed reality technologies, were whittled down to a final set of 7 projects that we share publicly. And as part of our ongoing series, we are sharing details here on a new project that taps AI for eCommerce.
Project clothes swap
As more people are staying home, online activity is seeing a surge. Online sales of apparel for instance (driven in part by promotions) have increased 34 percent between March 12 and April 11 (per aggregated data from Adobe Analytics). And while categories like pants have fallen 13 percent, more comfortable clothes in the pajama category have risen 143 percent.
For years, apparel brands have had to make themselves more accessible beyond the physical store. Initial forays into eCommerce have evolved into more sophisticated uses of AI and data, as well as content. This move was unilateral, spanning fast fashion to luxury retailers. Nike as an example, used a set of apps (e.g. SNKRS) to drive affinity for the brand online. In the case of Prada, a 2019 collaboration with Adobe focused on using data and AI to get a better grasp of what consumers needed online.
The digital storefront had become table stakes. For many now, it is a means of survival. And once the world returns to a more normalized state and consumer spending resumes, we expect that brands will continue investing in their digital strategy. We also believe that they will use technology in new ways, to be more efficient while meeting consumer demand.
We are showcasing “Project Clothes Swap” in Adobe Experience Manager, to show how AI can take different outfits and move them around on different models online. To illustrate how this works, imagine a brand that has a repository of models that have been photographed in the past. When new styles come in, only the clothes have to be photographed. Via Adobe Sensei, the AI will automatically form clothing on a model and deliver all the variations a brand needs.
While we don’t expect physical photoshoots to go away, there will be instances where the time and cost savings can be compelling – especially when the right technology is available. The underlying AI in Project Clothes Swap, a patented method called “SieveNet,” was created to remove distortions that are characteristic of other techniques. It aligns with Adobe’s long history of working with graphics and AI that has been trained to understand the nuances in composition, textures and the like.
Project Clothes Swap can also play a helping hand when it comes to promoting diversity in the images we see online. A recent study has shown that over 75 percent of female shoppers prefer brands that feature a variety of ethnicities in their ads. In the same way that one model can showcase different outfits, the reverse is possible as well.
As with many AI technologies, the use cases can be broadened and customized depending on the brand. On the consumer side for instance, Project Clothes Swap can be leveraged in scenarios where shoppers want to upload their own photo and see how a piece of clothing looks on them. The same goes for putting different pieces of clothing and accessories together one on model, which the AI can help place accurately.